
AD-A161 358 DERIVATION OF RANDOMIZED ALGORITHMS(U) HARVARD UNIV 1/1
CAMBRIDGE MA AIKEN COMPUTATION LAB
S RAJASEKARAN ET AL OCT 85 TR-16-85 N888 4-88-C-80647

UNCLASSIFIED F/G 12/1

EhEEEEEEEIhll
UIIIIIII

N.-7

A,-

1%.1.

32!

L4.l 1111121.8
m II1.25 JJ~f 1.4 1.8

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

.7-

NO

flr' 7

DERIVATION OF RANDOMIZED ALGORITHMS

Sanguthevar Rajasekaran

and

John H. Reif
in

.4 TR-16-85

Harvard University

Center for Research
in Computing Technology

TbJa documoat hax bem aW.ow

fm puh!ic Wxwe cmd mile, Its
diaftibution b unjjmjt*&

Aiken Computation Laboratory

33 Oxford Street

Cambridge, Massachusetts 02138

DERIVATION OF RANDOMIZED ALGORITHMS ... *-

Sanguthevar Raj asekaran
and

John H. Reif

TR-16-85

1'.ju~F bonu-r

-ag i- '-

'tot urill
dl-btiuI

41%

A Lia 0ne

SECURITY CLASSIFICATION OF THIS PAGE ("on DatafEntered

REPOT DCUMNTATON AGEREAD INSTRUCTIONSREPOT DCUMNTATON AGEBEFORE COMPLETING FORM
2.1T ACCESO NO I.RCIPIENT'S CATALOG NUMBER

TILE(adSutile5. TYPE OF REPORT & PERIOD COVERED

DERIVATION OF RANDOMIZED ALGORITHMS Technical Report

SPERFORING ORG. REPORT NUMBER
TR-16-85

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(#)

Sanguthevar Rajasekaran N00014-80-C-0647
John H. Reif

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Harvard University

Cambridge, MA 02138

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE -

office of Naval Research October_______1985___

800 North Quincy Street I3. NUMBER OF PAGES

Arlington, VA 22217 23
14. MONITORING AGENCY NAME A ADORE.SS(if different from Contr~olling Office) IS. SECURITY CLASS. (of this report)

Same as above
I3s. DECLASSI FICATION/ DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

unclassified

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Report)

unclassified *

4A

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on roverse eide if necessary and Identify by block num ber) *r.~

randomnized algorithms, derivation, parallel algorithms,
searching, sorting, selection

* 20. ABSTRACT (Continue on reverse od*e It necessary and identify by block num~ber)

* see reverse side.

D D I FORMN17 1473 EOITION OF I Nov 65 Is OGSOLZTZ
S/N 0102-014-6601 _______________________

SECURITY CLASSIFICATION OF THIS PAGE (When Data EteOred)

ABSTRACT

This paper surveys a number of efficient randomized algorithms for selection

and sorting which we derive from inefficient deterministic specifications. Along

with these derivations, we simultaneously derive bounds on the probability distri-

bution of the sequential and parallel time cost of these algorithms.

There are several potential benefits of this work. We develop, for the first

time, geneal techniques for deriving randomized algorithms from deterministic

specifications. Previous derivations only considered deterministic algorithms.

Furthermore, our derivations encompass many known sequential and parallel ran-

domized algorithms for selection and sorting which required separate proofs and

probabilistic analysis.

Also, we present a new randomized comparison sorting algorithm that takes

O(loglogn) time and uses n 'I. processors to sort n keys.

±+W

-..

Id -

%.

Derivation of Randomized Algorithms

Sanguthevar Rajasekaran

John H. Reif

Aiken Computing Lab.

Harvard University

October 17, 1985

Actession For

NTIS Cr-i
DTIC T Iil

, .,Aval ,.l'.l it ,Codes

Dist Speei ao

S". D3

C'
,-- .' ; - t "- ,. - j ' t , " - '- "- '. - . " - - -

. . -7 -7 *- -- 7-

ABSTRACT

This paper surveys a number of efficient randomized algorithms for selection

and sorting which we derive from inefficient deterministic specifications. Along

with these derivations, we simultaneously derive bounds on the probability distri-

bution of the sequential and parallel time cost of these algorithms.

There are several potential benefits of this work. We develop, for the first

time, geneal techniques for deriving randomized algorithms from deterministic

specifications. Previous derivations only considered deterministic algorithms.

Furthermore, our derivations encompass many known sequential and parallel ran-

domized algorithms for selection and sorting which required separate proofs and

probabilistic analysis.

Also, we present a new randomized comparison sorting algorithm that takes

O(loglogn) time and uses nl +' processors to sort n keys.

-J

-.

1. INTRODUCTION

1.1 Meaning of Derivation

A growing body of computer science literature is concerned with deriving

efficient algorithms for given mathematical specifications which would be

inefficient to execute as such. For example, [Scherlis 80) derives a family of parsing

algorithms and [Reif and Scherlis 84) derive a family of efficient depth first search

algorithms for various connectivity problems of graphs and digraphs. The process

of deriving algorithms from given specifications could be thought of as restating

the specifications in steps, using general algorithm design techniques and problem

specific knowledge, such that the specification at any step of derivation reflects an

improvement in the efficiency of its execution over the one in the previous step.

The advantage of this derivation process is manyfold. These derivations serve as

constuctive proofs for the correctness of a family of algorithms. Also, they enable

us to understand existing efficient (and possibly complicated) algorithms for the

problem at hand better, than merely reading the proofs of their correctness. In this

paper we derive randomized algorithms for selection and sorting.

1.2 Randomized Algorithms

A randomized algorithm A defines a mapping from an input domain D to a

set of probability density functions over some output domain D'. For each inputF ED, A(x): D--,[0,1[is a probability density function, where A(x) (y) E [0,11 is

the probability of outputting y given input x. In order for A(x) to represent a pro-

bability mass function, we require

EA(x) (y) = 1, for each E D.

A mathematical semantics for randomized algorithms is given in [Kozen 80).

"*1

"" -"" " " ' "." -" -; -. --r.-".''. . ' ;": :'';" - ; - '' ." " . ' : ;. ?.' .

Two different types of randomized algorithms can be found in the literature:

I)those algorithms which always output the correct answer but whose run time is

a random variable with a specified mean, and 2)those which output the correct

answer with some probability (the probability space being the set of all possible

inputs). For example, the randomized sorting algorithm of (Reischuk 81] is of the

first type and the primality testing algorithm of [Rabin 76] is of the second type.

In general, the use of probabilistic choice in algorithms to randomize them has

often lead to great improvements in their efficiency. The randomized algorithms

we derive in this paper will be of the first type.

1.3 Deriving Randomized Algorithms

No previous paper has given derivations of randomized algorithms (for any

problem). We begin with the mathematical specifications of selection and sorting

problems. We'll encode these specifications into canonical algorithms. Various algo-

rithms found in the literature for these problems will then be derived as special

cases of these canonical algorithms. The former algorithms result from specializing

and/or modifying one or more of the steps in the canonical algorithms.

To start with, we derive and analyze a random sampling algorithm for

approximating the rank of a key (in a set). This random sampling technique willI serve as a building block for the selection and sorting algorithms we derive. We

analyze the run time for both the sequential and parallel execution of the derived

algorithms.

1.4 An O(loglogn) Time Sorting Algorithm

Many optimal parallel comparison sorting algorithms are available in the

literature. These algorithms are optimal in the sense that the product of time and

processor bounds for these algorithms equals the lower bound of the run time for

02

7. ;7 2- 7 -7 T-77,| |

sequential comparison sorting. These processors run in time O(logn). Some of

these algorithms are l)Reischuk's[Reischuk 81] randomized algorithm, 2)AKS

deterministic algorithm[AKS83], 3)Column Sorting algorithm [Leighton 83],

4)FLASH SORT algorithm[Reif and Valiant 83]. The first three algorithms run on

the PRAM model whereas the fourth algorithm runs on the fixed connection model.

We give a new (non optimal) sorting algorithm that runs in time O(loglogn) time

and which uses O(n"+4) processors, for any c>o.

1.5 Organization of this Paper

In section 2 we define the selection and sorting problems and our parallel

comparison tree machine model. In section 3 we give and analyze an algorithm for

computing the rank of a key approximately. We also state, in this section, an

important result from sampling theory which will be used throughout the rest of

the paper. Finally, in sections 4 and 5 we derive and analyze various randomized

algorithms for selection and sorting. In section 5 we also give a new comparison

sorting algorithm that runs in time O(loglogn) time.

2. COMPARISON PROBLEMS AND PARALLEL MACHINE MODELS

2.1 Comparison Problems

Let X be a set of N distinct keys. Let < be a total ordering over X. For

each key xEX define

rank(x,X) = I {I.X / x<'} +1.

For each index i, <_i<N, we define sa.Lez(i,X) to be that key xEX such that[i rank(z,X). Also define

3

ao. . ..) = (112,... .°

where z - select(iX), for i=l,...,N. As defined, these functions are expensive to

compute. For example, the sort definition requires N2 comparisons.

2.2 Parallel Comparison Models

In the sequential comparison tree model of lKnuth 73) a single step at a node

of the tree consists of a comparison of two keys. The outcome of this comparison

takes the execution to a child of this node. The leaves of the tree provide output

values. The run time in this model is the number of nodes visited on a given execu-

tion. A distinct tree is allowed for each input. In a randomized comparison tree

model execution from any node branches to a random child depending on the out-

come of a coin tossing.

[Valiant 75] describes a parallel comparison tree machine model which is

similar to the sequential tree models, except that multiple comparisons between

keys are allowed on each step. Thus a comparison tree machine with p processors

is allowed a maximum of p comparisons at each node, which are executed simal-

taneously. We allow our parallel comparison tree machines to be randomized,

. with random choice nodes as described above.

2.3 Parallel RAM Models

More refined machine models of computation also take into account storage

and arithmetic steps. The sequential random access machine (RAM) described in

[Aho, Hopcroft, and Ullman 761 allows a finite number of register cells and also

infinite global storage. A single step of the machine consists of an arithmetic

operation, a comparison of two keys, reading off the contents of a global cell into a

register, or writing the contents of a register into a global memory cell.

.%.

i! The parallel version of RAM proposed by [Fortune and Wylie 78] allows mul-

tiple RAMs to be generated from a single original RAM by execution of a fork

operation. This model, known as PRAM, allows multiple concurrent reads but

prohibits concurrent writes. WRAM model, which is a variation of PRAM, permits

concurrent reads and concurrent writes. There are three variations of WRAM

I. depending on how the write conflicts are resolved.

The models we employ, in this paper, for various algorithms will be the ones

used by the corresponding authors.

...w

IU

o

3. RANDOM SAMPLING

3.1 An Algorithm for Computing Rank

Let X be a set of N keys with a total ordering < defined on it. Our first goal

is to derive an efficient algorithm to approximate rank(xX), for any key zEX. We

require that the output of our randomized algorithm have expectation rank(z,X).

The idea will be to sample a subset of size s form X, to compute the rank of x in

this sample, and then to infer its rank in X. The actual algorithm is given below.

aljgnrithm samplerank,(zX);

Let S be a random subset of X of size a;

rtun N rank(xSU{z})

The correctness of the above algorithm is stated in the following

Lemma 3.1 The expected value of samplerank,(z,X) is rank(x,X).

Proof Let the number of elements <z inX be k (i.e., rank(x,X) - k). Then, for a

random yEX, Prob.[y< x]=-L. Therefore, out of 8 elements chosen randomly from

X, Prob.[exactly I of them are <xz B t; s+1,--} (where B is a binomial distri-

-- bution). Mean of this binomial distribution is (s+1)-L. Therefore,

Mean [N rank(x,SU{z}) =k =rank(x,X)

* 'i.e., Mean [samplerank.(z,X) = rank(x,X) 0

Another way of proving the correctness of our algorithm is to use some well

known results from Sampling Theory. We address ourselves to the following

{8

• '. o -o .- _ - :- . . o:,/ / - ' . ,. . . °,.._ ,

problem: "Given a set X and a random zE X. Also, S is a random subset (or sam-

pling) of X. If the number of elements <z in S is 1, how many elements in X are

<z?" Let ri= rank(select(i,S), X). In the next subsection we'll obtain the distribu-

N
tion of ri and show that Mean(ri) i

8+1

3.2 Distribution of ri

Let Y1 ,Y2, . , Ybe a random sample from a continuous distribution with

density function f(y). If Ypj) -- Y(2) - " Y,) is the sorted order of the sam-

ple, then Y(,) is called the ith order statistics of the sample Y1, , Y,- If

f(y) = 1 in [0,1] and 0 elsewhere, then the density function of the ith order statis-

tics [Wilks 76] is given by
8!

which is a Beta distribution with parameters (i,s-i~l). Therefore, asymptotically,

-L has a Beta distribution with parameters (i,a-i+i), immediately implying thatN

Mean(r_)=i and Var(ri)= N2 From this Beta distribution we can
8+1 (S+1)2(8+2)

also obtain the following confidence interval on r,.

Lemma 3.2 For every , Prob. 8ir-

some constant c.

Proof We'll assume logN=o(s) in the following proof. Also, this proof is given in

two cases on the parameters of the Beta distribution.

7

;V) : :,;:: :: '.: ,-, ; - . . -: - : - : . , . : .; .-

Cael Both i and s-i+1 are >V18-RlogN.

Let Z be a random variable with probability density function f(z), mean p , and

variance o-. It is a known fact from statistics that if the skewness of Z is 0, then

-0 can be approximated by the normal variate N(O,1). I a skewness of a Beta°U
distribution with paramettrs (a , 8) is 0 when either a = 8 or both a and P are oo.

Therefore, when both i and e-i+1 are >%el/logN, asymptotically, the skewness

of r, tends to 0, making the approximation of -p by the standard normal vari-0f

ate meaningful. And hence,

Prob.. r,- > 2 exp(-u 2/2)da

exp(-t 2/2)Vir t
b exp(-dt2) <: b N" , for constants b and d

and t='4/n d .

Notice that Var(ri) - . Now, substituting Mean(r.) = i--- and

Var(ri) : 5 , we get the desired result.

Case2 Either i or a-i+l is < Vs/i 1ogN.

The case i < N/'/logN is identical to the case (.-i+i) _ Vs/logN. So, we'll

consider only the case i < Vo/logN.

If kl,k 2,...,k, are the elements of the random sampling set S in sorted order, then

these elements divide the set X into (s+1) subsets X,X 2 ,...,X,+ where

X, = (zlX / z~k}, Xi - (zEX / k_<z<kj}, for i=2,...,s and

X,+ - {zEX /z>k,}. In terms of the cardinalities of these subsets, ri can be

expressed as IXjo for i =,...,.. It can be shown that(see lemma 3.3 below) the

"_-1

6.
-7%

maximum cardinality of any subset X, is < --logN, with probabilty greater than
8

1-O(N ") (for any a). This result immediately implies that r,. _ i- logN with
8

-' probability > 1 - O(N - *) thus proving our claim.

Lemma 3.3 A random SCX of size a divides X into s+1 subsets as explained

cNabove. The maximum cardinality of any of the resulting subsets is <--2 log N
2

with probability greater than I-N-*. (IxI=N).

"" Proof

First we'll compute the probability that at least one subset is of size at least v.

Realize that the selection of a random subset S of X results in a random (a+1)-

partition of X. Total number of (8+1) partitions of X is (N-1}. Number of parti-

tions of X that have at least one part of size >v is

Therefore, the probability that there is at least one part which is of size at least v

is

N-v-i

N 8
1

-" Using Stirling's approximation,

ON (N-v-I) N - , - l (N-a -1) N - e- I

(N--v-1)N-
-
v
-
1 (N-I)N

- I

V+1
NS

__LI

N N

Using the fact 1--L <W] e

P exp[

If v--logN, then P < N-'.
2 a

i.e., the probability that none of the resulting subsets is of size greater than

a N logN is > 1-N-" , which is our claim.
2.

This completes our proof of Lemmas 3.3 and 3.2. These Lemmas will be used

repeatedly here after.

4. DERIVATION OF RANDOMIZED SELECT ALGORITHMS

4.1 A Summary of Select Algorithms

Let X be a set of N keys. We wish to derive efficient algorithms for

select(i,X) where 1<i<N. Recall we wish to get the correct answer always but

the run time may be a random variable. We display a canonical algorithm for this

problem and then show how select algorithms in the literature follow as special

cases of this canonical algorithm.

* aI[nrithm canselect;
hagin

select a bracket (i.e., a subset) B in X such that
select(i,X) lies in this bracket with very high
probability;
Let il be the number of keys in X less than the
smallest element in B;
r canselect(i-i i , B)

=ud;

*]Los

O'p

4 Select algorithm of [Hoare 61] chooses a random splitter key k E X, and

recursively considers either the low key set or the high key set based on where the

'" ith element is located. And hence, B for this algorithm is either { E X / z < k}

or (z E X / z > k) depending on which set contains the ith largest element of X.

I B I for this algorithm is A for some constant c.
C

On the other hand, select algorithm of [Floyd and Rivest 75] chooses two

random splitters k, and k2 and sets B to be {z E X / k, z < k2). k, and k2 are

chosen properly so as to make B = 0(N'), a < 1. We'll analyze these two

algorithms in more detail now.

4.2 Hoare'a Algorithm

Detailed version of Hoare's select algorithm is given below.

ljgnrithm Hselect(i,X);
(asgrt 1< i<1 xI)

beginl
if X = {z) then retun x;
Choose a random splitter k (+ 2,;
LetB ={ EX/x < k);
iI B I > i th rturn Hselect(i,B)
te return Hselect(i - IBI , X - B)

end;

Let Tp (i,N) be the expected parallel time of Hselect(i,X) using at most p

simaltaneous comparisons at any time. Then the recursive definition of Hselect

-/ yields the following recurrence relation on Tp (i,N).

7p (i,N)= +N , (i-j, N-j) + T (ij)

An induction argument shows

TN (i,N) _ 0(logN)

* 11

and

T1 (i,N) < 2N + min(i,N-i) + o(N).

To improve this Hselect algorithm, we can choose k such that B and X - B

are of approximately the same cardinality. This choice of k can be made by fusing

*, samplerank, into Hselect as follows.

Mgorithm sampleselect. (iX);
(sarI< i, <IAI)

if X = {z) ~hea rpwrnz;
Choose a random sample set SC X of size a;
Let k = select([a/2], S);
Let B {z E X/x < k};
if IBI > i theu reurn sampleselect.(i,B)
rim return sampleselect.(i - IBl , X - B)

end;

This algorithm can easily be analyzed using Lemma 3.2.

4.3 Algorithm of Floyd and Rivest

As was stated earlier, this algorithm chooses two keys k, and k2 from X at

random to make the size of its bracket B=O(N) , 16<1. The actual algorithm is

algorithm FRselect(i,X);
hegin

if X {z} then return x;
Choose k ,k2 E X such that k, < k2
Let r, = rank(k , X) and r2 = rank(k2 , X);
if r, > ithx FRselect(i,{z E X /z < k))
&A if r2 > i then FRselect(i-r , {z E X / k, < < k2)

F~e select(i-r2, (z E X / z > k2))

e.nd;

Let 7' (i,N) be the expected run time of the algorithm FRselect(i,X), allow-

ing at most p simaltaneous comparisons at any time. Notice that we must choose

k, and k2 such that the case r, _! i < r2 occurs with high likelyhood and r2 - r is

"12"

" #" ." . , r" . . .€, , '.- . -' " .- .,-.' .. -, -, .,. .- .' -. - . ..

2. , . . % . -." , -. "., - -- . . , '- . -. -"-"- ' .- .- ' -. - - .. -..-.

not too large. This is accomplished in FRselect as follows.

Choose a random sample S g X of size a. Set k, to be

select (N+l) - 6, S and set k2 to be select (+1) + 6, . If the parameter 6selec i {I (N+I)

is fixed to be [v/das logN], for some constant d, then by lemma 3.2,

Porb.[r, > i] < N- a and Prob.[r < i] < N-*. Let T, (-,a) = max T, (j,s). The

resulting recurrence for the expected parallel run time with p processors is

Tp (i,N) : N + T,(-)
p

+ Prob.1r, > i] X 7', (i,r)

+ Prob.[i > r]2 X 7' (i-r , N-r 2)

+ Prob.[r i i r2l] X 7' (i-ri , r2-r)

<+,,(,s)+2N -axN+TI, i'j-+ |.

p + 2 -I N + TP j, N 1

Note that k, and k2 are chosen recursively. If we fix da < 3 and let

a = N2/ logN, the above recurrence yields [Floyd and Rivest 75]

T, (i,N) < N + min (i,N-i) + 0(s).

Observe that if we have N 2 processors, we can solve the select problem in one time

unit, since, all possible pairs of keys can be compared in one step. This implies

that T. (i,N) = 1 for p > N2. Also, from the above recurrence relation,

TN (i,N) 0(1) + TN (-,VN) = 0(1),

as is shown in [Reischuk 811.

v13

a,

5. DERIVATION OF RANDOMIZED SORTING ALGORITHMS

.1 A Canonical Sorting Algorithm

The problem is to sort a given set (X) of N distinct keys. The idea behind the

canonical algorithm is to divide and conquer by splitting the given set into (say) 81

disjoint subsets of almost equal cardinality, to sort each subset recursively, and

finally merge the resultant lists. A detailed statement of the algorithm follows.

algoiithm cansort(X);

ifX-{:}±bm return X;
Choose a random subset S C X of size a
Let S1 be sorted S;
As explained in section 3.2, S divides X
into a+1 subsets X,, , " ,X*+ ;

" d;return cansort(X) . cansort(X 2) .. cansort(X,+);
,'.., . md;

Now we'll derive various sorting algorithms from the above.

5.2 Hoare's Sorting Algorithm

When I 1 we get Hoare's algorithm. Hoare's sorting algorithm is very much

similar to his select algorithm. Choose a random splitter k E X and recursively

sort the set of keys {xEX / x<k) and {xEX / x>k}.

algnriLthm quicksort(X);

if IX I thra return X;
Choose a random kEX;
return quicksort({xEX / z<k)) . (k) . quicksort({xEX / x>k});

end;

Let T1 (N) be the number of sequential steps required by quicksort(X) if IXI = N.

Then,

T1 (N) 5 N-I + " (Ti (i-1) + T1 (N-i)) 2NIogN.
i-1

" 14"

A better choice for k will be sampleselect, (LN/2J, N). With this modification,

quicksort becomes

atlgrithm samplesort, (X);

if I Al 1 then r rnX;
Choose a random subset SCX of size a;
Let k = select(L/2J, S);
return samplesort, ({zEX / z<k} . (k) . samplesort, ((rEX / z>k});

,'" end;

By Lemma 3.2,

Prob. [Irank(k,X) - N/21 > VdaNlogN] < N

for some constant d. Let Z (8,N) be the expected number of comparisons required

by samplesort, (X). Since the [Floyd and Rivest 75] selection algorithm requires

only N + o(N) comparisons, we have for s(N) = N/logN,

C(a(N), N) 0(s (NI), NI) + N -* V(y(N), N)N + o(N)

where

N, = N/2 + (V -N7)logN.

Solving this recurrence [Frazer and McKeller 70] show

Z(s(N), N) ,_ Nlog2N,

which asymptotically approaches the optimal number of comparisons required to

sort N numbers on the comparison tree model.

Let Tp (8,N) be the number of steps on a parallel comparison tree model

with p processors to execute samplesort, (X) where IAl = N. Since only a con-

stant number of steps are required to select the median k = select(N/2, X) using

N processors, [Reischuk 81] observes for this specialized algorithm with s(N) = N,

TN (N,N) 0(1) + TN 12 (N/2, N/2)

15

< O(logN).

5.3 Multiple Sorting

Any algorithm with a>1 falls under this category. Let us call cansort as mul-

tisort when s>1. As was shown in Lemma 3.3, the maximum cardinality of any

subset X. is < AlogN (= N ,aay) with probability > 1 - O(Na). Therefore, ifs

T, (N) is the expected parallel comparison time for executing multisort, (X) with

p processors (where IxI - N), then,

Tp (N) TpNJN (NI) + N-0 T (N)

+ T, (a) + - + log(s)
P

S, YNIjN (NI) + 0(1) + N log(8).
--P

[Reischuk 82] uses the specialization 8 = N/ 2 which yields the following recurrence

for 7' (N).

TN T N, (N) + -logN + 0(1)
2

= O(logN).

Alternatively we can set p = N' +' and 8 N' for any 0 < e <1 and get an

N, - N'/ 2VdalogN for some constant d. This choice of S yields the recurrence

TN1+ (N) I% (N) + 0(1) + N-logN

TNN, (NI) + 0(1)

<0 0(loglogN)

5.4 FLASHSORT

[Reif and Valiant 83] give a method FLASHSORT for dividing X into even

more equal sized subsets. This method is useful for sorts within fixed connection

kU *]Leo

networks, where the processors can not be dynamically allocated to work on vari-

ous size subsequences. The idea of [Reif and Valiant 83] is to choose a subsequence

S C X of size N11 2 , and then choose as splitters every (alogN)th element of S in

sorted order, i.e., to choose ki= select(aiLlogNJ, S) for i = 1,2,...,N1/2/logN.

Then they recursively sort each subset X4 = {rEX / ki_1 < x < k,}. Their algo-

rithm runs in time O(logN) and they have shown that after O(logN) recursive

stages of their algorithm, the subsets will be of size not more than a factor of 0(1)

of each other.

Ii
w

"17"

rI

,"kr~~~~~~~~~~........''.-...... .• ".. . .'. .- , - -.- " " .

REFERENCES

[Aho, Hopcroft, and Ullman 76]

The Design and Analysis of Algorithms, Addison-Wesley Publications, 1976.

[Borodin and Hopcroft 821

"Routing, Merging, and Sorting on Parallel Models of Computation",

Proceedings of the 14th Annual ACM Symposium on Theory of Computing,

1982, pp 338-344.

[Fortune and Wylie 78]

Proceedings of the 10th Annual ACM Symposium on Theory of Computing,

pp 114-118.

[Frazer and McKellar 70]

"Samplesort: A sampling Approach to Minimal Storage Tree Sorting", Jour-

nal of ACM, vol.17, No.3, July 1977, pp 496-502.

[Hoare 62]

"Quicksort", Computer Journal 5, 1962, pp 10-15.

[Floyd and Rivest 75]

"Expected Time Bounds for Selection", Communications of ACM, vol.18,

March 1975, pp 165-172.

[Hoare 751

"Algorithm 63 (PARTITION) and Algorithm 65 (FIND)", Communications of

ACM, March 1975, vol.18, No.3.

[Kozen 81]

"Semantics of Probabilistic Programs", JCSS vol.22, 1981, pp 328-350.

[Knuth 731

The Art of Compter Programming, vol.3, Sorting and Searching, Addison-

*"18 "

r~~u"..- -T- -7 --

Wesley 1973.

(Meggido 82]

"Parallel Algorithms for Finding the Maximum and the Median Almost

Surely in Constant Time", Preliminary Report, Compter Science Dept., Car-

negie Mellon University, Pittsburg, PA, October 1982.

[Preparata 78]

"New Parallel Sorting Schemes", IEEE Transactions on Computers, vol. C27,

No.7, July 1978, pp 669-773.

[Rabin 76]

"Probabilistic Algorithms", Algorithms and Complexity, New Directions and

Recent Results, ed. by J. Traub, Academic Press 1976, pp 21-36.

[Reif and Scherlis 84]

"Deriving Efficient Graph Algorithms", Logics of Programs Workshop,

Pittsburg, PA, 1984, Springer Verlag Notes in Computer Science 164.

[Reif and Valiant 83]

"A Logaritmic Time Sort for Linear Size Networks", 15th Annual ACM Sym-

posium on Theory of Computing, Boston, MASS., 1983, pp 10-16.

[Reif 83)

"A nl+ Processor O(loglogn) Time Probabilistic Sorting Algorithm", SIAM

Symposium on the Applications of Discrete Mathematics, Cambridge, MASS.,

June 27-29, 1983.

[Reischuk 81]

"A Fast Probabilistic Parallel Sorting Algorithm", IEEE Conference on Com-

puter Science, Oct. 1981.

U-

/"--"+" 1g"

[Scherlis 80]

"Expression Procedures and Program Derivation", Ph.D Thesis, Stanford

University 1980.

[Shiloach and Vishkin 81]

"Finding the Maximum, Merging, and Sorting in a Parallel Computation

Model", Journal of Algorithms 2, 1981, pp 881-102.

[Valiant 75]

"Parallelism in Comparison Problems", SIAM Journal of Computing, vol.4,

Sept. 1975, pp 348-355.

4[Wilks 62]

Mathematical Statistics, John Wiley and Sons, New York, 1962.

*20'

FILMED

DTIC, 7:7 :.:*
4

